Let x[n]=(−1)^{n}u[n−n_{0}]^{+αn}u[−n]. Determine the constraints on the complex number α and the integer n_{0} so that the z trans form X(z) exists with region of convergence .

Skip to content
# Let x[n]=(-1) n u[n-n 0 ] +an u[-n]. Determine the constraints on the complex number a and the…

^{n}u[n−n_{0}]^{+αn}u[−n]. Determine the constraints on the complex number α and the integer n_{0} so that the z trans form X(z) exists with region of convergence .